When you are afraid, you start going into fight or flight mode. Your body starts prioritising what is needed for immediate survival - screw routine body functions, if you don't make it past the next few moments there won't be a routine to return to. You stop digesting food. Cell repair slows or stops. You stop producing saliva, which is why your mouth goes dry when you're nervous just before making a speech or going into a difficult conversation. Your heart rate and breathing increase to ensure better blood flow. A cocktail of hormones like epinephrine and oxytocin are cued up and produced, which amplifies your body's ability to act (and remarkably, in the case of oxytocin, reminds you to seek help).
Don't be mistaken about what happens when you feel fear. Your body is readying itself to help you face what you fear in the way it knows how.
What causes us to feel fear?
1) Fear occurs to us unconsciously. Do you pause to think, hey, very angry looking snake! Maybe I should be scared. Of course not, it would be too late! Fear becomes much clearer when we examine what happens inside your brain. When you are afraid, the fear/anger/aggression/anxiety centre of your brain - the amygdalas (get used to this name, it's gonna keep popping up) lights up. And we've covered all the changes that happen in your body: your blood pressure, your hormones, your heart-rate. But remember how amygdala is like a train interchange with direct routes to different parts of your brain? There is a direct neural link between our amygdala and your pre-frontal cortex, the rational thinking part of your brain. And if we look closely enough or we think things through, sometimes we realise, argh! it's not an angry snake, it's just a prank toy that your annoying friend had thrown at you. Or if you've handled angry snakes enough times, your amygdala does not light as much. Your blood pressure and your heart rate do not increase as much, you realise what you need to do is to stay calm and slowly back away.
Finally, notice how fear, anger, aggression, and anxiety are processed by the same part of the brain, the amygdala. This is no coincidence. These 4 emotions are closely tied to one another; aggression maybe triggered because one is nervous, angry, or fearful. Being fearful may cause one to react angrily, as a self-defense mechanism. Fear, like all our emotions, happens to us. Mostly, we can't control how it originates. But we can control how it develops by understanding what exactly is causing fear and by choosing the response that dispels it
2) We fear what we are unconfident or uncertain about. Think back on your ancestors doing something they weren't confident or certain off - hunting a massive animal without a weapon, or eating a berry they've never seen before. Doing so would mean a very high chance of seriously harming themselves. Today, after many cycles of evolution, we have been wired based on these experiences.
Think about it. Are you ever fearful of something you've done before, and are good? Brushing your teeth, putting on your clothes, indulging in your favourite hobby (whatever it is)? Of course not. You know you can perform these functions easily. You are confident.
But many of us would have felt fearful and anxious the first time we ventured into something new: using a pair of chopsticks, riding a bicycle, swimming, going on a first date. We were uncertain about these functions, and we were not confident about performing them. However, once we have demonstrated to ourselves that we are able to perform these tasks, we are no longer afraid. The same applies to more challenging tasks. Some of us struggle with: public speaking, starting a business, having a very difficult conversation with the CEO... You are uncertain and unconfident if you can succeed. But once you have proven to yourself you are able to do it, even for the more challenging tasks, you are no longer afraid. People might start off feeling scared about public speaking, but after speech 3797, you're pro The catch, of course, is that sometimes, we are too scared to start.
Even if we were certain of something OR confident about something, many of us will still feel some amount of fear. We might be theoretically certain how we should use a pair of chopsticks, but if we have never succeeded in using them properly, we remain unconfident and will still feel nervous if we had to use them, especially when others are observing. You might also be confident about
3) we fear what is painful. Boxer. climbing 100 flights of stairs or doing 100 burpees. But pain is not just physical but mental. Failure is painful. Being judged is painful.
This is why you procrastinate. You either fear what you have to do bevause you don't know how to do it (you don't fear brushing your teeth for example), or you fear doing something becaue you know it will be effortful
4) we fear what we cannot control
Learn more about your amygdala, the amygdala hijack, the thalamus, the pre-frontal cortex, and how your brain works here.
​
Summary:
- Fear and anxiety (and anger + aggression) are always
Why do people from other races all look alike?
The fusiform face area
Check out this short 15s clip of Bond, James Bond, above.
The evil villain, Christoph Waltz, threatens to destroy a small part of Bond's brain, the fusiform gyrus. Waltz claims that it would render Bond unable to recognise anyone anymore.
Is Waltz right? Well, broadly, yes. He's right in that the fusiform gyrus is about facial recognition. And destorying this tiny part of the brain does remove Bond's ability to recognise faces.
(I do hasten to add that of course, we recognise people by more than their faces - but given that Waltz is quite a terrific actor, we will let him off for this on
Why do people from another all look like they have the same face?
Neurons, neural network. You recognise what you are more familiar with
Empathy -eagleman
​
But work by Isabel Gauthier of Vanderbilt University demonstrates something more complicated. Show pictures of different cars, and the fusiform activates—in automobile aficionados. 112 Show pictures of birds, and ditto among bird-watchers. The fusiform isn’t about faces; it’s about recognizing examples of things from categories that are emotionally salient to each individual.
​
Damaging the fusiform, for example, selectively produces “face blindness” (aka prosopagnosia), an inability to recognize faces. Work by John Gabrieli at MIT demonstrates less fusiform activation for other-race faces, with the effect strongest in the most implicitly racist subjects. This isn’t about novelty—show a face with purple skin and the fusiform responds as if it’s same-race. The fusiform isn’t fooled—“That’s not an Other; it’s just a ‘normal’ Photoshopped face.”
​
In accord with that, white Americans remember white better than black faces; moreover, mixedrace faces are remembered better if described as being of a white rather than a black person. Remarkably, if mixed-race subjects are told they’ve been assigned to one of the two races for the study, they show less fusiform response to faces of the arbitrarily designated “other” race. 12 Our attunement to race is shown in another way, too. 13 Show a video of someone’s hand being poked with a needle, and subjects have an “isomorphic sensorimotor” response—hands tense in empathy. Among both whites and blacks, the response is blunted for other-race hands; the more the implicit racism, the more blunting. Similarly, among subjects of both races, there’s more activation of the (emotional) medial PFC when considering misfortune befalling a member of their own race than of another race. This has major implications. In work by Joshua Correll at the University of Colorado, subjects were rapidly shown pictures of people holding either a gun or a cell phone and were told to shoot (only) gun toters. This is painfully reminiscent of the 1999 killing of Amadou Diallo. Diallo, a West African immigrant in New York, matched a description of a rapist. Four white officers questioned him, and when the unarmed Diallo started to pull out his wallet, they decided it was a gun and fired forty-one shots. The underlying neurobiology concerns “event-related potentials” (ERPs), which are stimulus-induced changes in electrical activity of the brain (as assessed by EEG— electroencephalography). Threatening faces produce a distinctive change (called the P200 component) in the ERP waveform in under two hundred milliseconds. Among white subjects, viewing someone black evokes a stronger P200 waveform than viewing someone white, regardless of whether the person is armed. Then, a few milliseconds later, a second, inhibitory waveform (the N200 component) appears, originating from the frontal cortex—“Let’s think a sec about what we’re seeing before we shoot.” Viewing a black individual evokes less of an N200 waveform than does seeing someone white. The greater the P200/N200 ratio (i.e., the greater the ratio of I’m-feeling-threatened to Hold-on-a-sec), the greater the likelihood of shooting an unarmed black individual. In another study subjects had to identify fragmented pictures of objects. Priming white subjects with subliminal views of black (but not white) faces made them better at detecting pictures of weapons (but not cameras or books). 14 Finally, for the same criminal conviction, the more stereotypically African a black individual’s facial features, the longer the sentence. 15 In contrast, juries view black (but not white) male defendants more favorably if they’re wearing big, clunky glasses; some defense attorneys even exploit this “nerd defense” by accessorizing their clients with fake glasses, and prosecuting attorneys ask whether those dorky glasses are real. In other words, when blind, impartial justice is supposedly being administered, jurors are unconsciously biased by racial stereotypes of someone’s face.
​
Second depressing finding: subliminal signaling of race also affects the fusiform face area, the cortical region that specializes in facial recognition. 11 Damaging the fusiform, for example, selectively produces “face blindness” (aka prosopagnosia), an inability to recognize faces. Work by John Gabrieli at MIT demonstrates less fusiform activation for other-race faces, with the effect strongest in the most implicitly racist subjects. This isn’t about novelty—show a face with purple skin and the fusiform responds as if it’s same-race. The fusiform isn’t fooled—“That’s not an Other; it’s just a ‘normal’ Photoshopped face.” In accord with that, white Americans remember white better than black faces; moreover, mixed race faces are remembered better if described as being of a white rather than a black person. Remarkably, if mixed-race subjects are told they’ve been assigned to one of the two races for the study, they show less fusiform response to faces of the arbitrarily designated “other” race.
​
Though we derive subliminal information from bodily cues, such as posture, we get the most information from faces. 19 Why else evolve the fusiform? The shape of women’s faces changes subtly during their ovulatory cycle, and men prefer female faces at the time of ovulation. Subjects guess political affiliation or religion at above-chance levels just by looking at faces. And for the same transgression, people who look embarrassed—blushing, eyes averted, face angled downward and to the side—are more readily forgiven.